
1

Psychologia, 1999, 42, 186-198

The role of long-term working memory in text comprehension

Walter Kintsch,

University of Colorado

Vimla L. Patel

McGill University

K. Anders Ericsson

Florida State University

Running Head: Long-term working memory

Keywords: Long-term working memory, text comprehension

Abstract:

A distinction is made between short-term working memory, which is capacity limited, and

long-term working memory , which is available to experts in their domain of expertise .

Text comprehension  is viewed as expert  performance.  The role of long-term working

memory in text comprehension is analyzed, with  an emphasis on the activation of relevant

knowledge during comprehension .  Latent semantic analysis used to model knowledge

activation in text comprehension.
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Ever since the days of Ebbinghaus (1985), a plethora of research results have

poured from the laboratories of memory researchers. As the experimental evidence

accumulated, several fairly comprehensive theories of human memory emerged which

provide a reasonably good account of the major memory phenomena that had been studied

in the experimental laboratories.  Gillund & Shiffrin (1984), Murdock (1993), and

Hintzman (1988) are good examples of these comprehensive theories of memory, but we

should also note more specialized theories, such as that of Baddeley  (1996) on working

memory. While neither these theories nor the data on which they are based are able to

answer all questions about memory experiments or settle all disputes, they represent a solid

achievement and one can say with confidence that memory is one area of psychology about

which we know a great deal, in a fairly systematic way. Nevertheless, while the laboratory

study of memory thus flourished, this experimental research failed to address everyday

memory problems and phenomena. Therefore, this laboratory based research was

repeatedly attacked by psychologists who were interested in memory for stories, not word

lists, memory for autobiographical events, not contrived laboratory stimuli, memory in

ecologically relevant situations, not in controlled experiments. Experimental psychologists

for a long time had very little to answer these critics, the more radical of whom declared the

laboratory study of memory as irrelevant and were ready to discard it.

To heed these critics would be a major mistake, however. The rich knowledge we

have gained about memory processes from laboratory studies during the past 100 years can

very well inform and constrain our understanding of memory processes in ecologically

significant situations. It is the same memory we study in a controlled laboratory experiment

with artificial stimuli and in complex real-life situations – but we must figure out just how

the evidence from the memory laboratory applies to everyday memory phenomena. The

theory of long-term working memory of Ericsson & Kintsch (1995) does that for one

important problem: how memory is used in complex cognitive processes from skilled

performance to text understanding.  There appeared to be an unbridgeable gap between

what we know about memory in the laboratory and how memory is ostensibly used in such

tasks, requiring perhaps a completely different theory of memory than what experimental

psychologists had been working on for the past 100 years. Ericsson & Kintsch showed,

however, that this was by no means the case. They argued that classical memory theory did

not even have to be modified, just elaborated, in order to account for the observed memory

use in higher cognitive processes.

Within the standard working-memory framework, it is not possible to explain how

memory is used in many cognitive tasks, such as playing chess or text comprehension.
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Given the severe capacity constraints of short-term memory and working memory, how do

people perform tasks for which the memory demands greatly exceed these constraints?   Or

put in another way, why is memory so poor in the laboratory but so easy in many real-life

situations?

Consider the memory demands in text comprehension. Van Dijk & Kintsch (1983,

p. 347) list the following components of the memory system involved in text

comprehension: perceptual features, linguistic features, propositional structure,

macrostructure, situation model, control structure, goals, lexical knowledge, frames,

general knowledge, and episodic memory for prior text. Each of these components by itself

would exceed short-term working memory, but it is clearly needed in text understanding

and people have no memory problems in understanding well-written, familiar texts.

Similarly, a person memorizing a list of 100 random word requires at least one hour of

hard work. To memorize a text of 100 words is trivial, however, and a person reading a

novel for an hour could reproduce and reconstruct quite well what was read.

The theory of long-term working memory (LTWM) addresses this dilemma. It does

so by specifying the conditions under which working memory capacity can become greatly

expanded and by describing the mechanisms that are responsible for this expansion of

working memory. The theory was first proposed by Ericsson & Kintsch (1995) and further

elaborated by Kintsch (1998), Kintsch (in press), and Ericsson, Patel, & Kintsch (in

press). Herte, the recent elaborations of the theory will be emphasized, with a focus on text

comprehension rather than on skilled performance, the other primary domain of the theory.

LTWM is restricted to well practiced tasks and familiar knowledge domains. With

novel tasks and in unfamiliar domains people must do with the severely capacity restricted

short-term working memory. Since the typical laboratory tasks were unfamiliar to the

subjects of memory experiments – like memorizing a list of paired-associates  - and the

materials used were relatively meaningless – word lists, or, in the extreme case, nonsense

syllables  - most laboratory studies of memory never involved more than short-term

working memory. Hence the ubiquitous findings of severe capacity limitations. However,

in some real life situations people perform tasks at which they are highly skilled and well

practiced, involving well-known knowledge domains. Performance does not suffer from

memory limitations in these tasks. Skilled, expert performance provides many examples of

such situations – playing chess or medical diagnosis, for instance. Of course, not everyone

playing chess will have a memory advantage. Only the real expert shows exceptional

memory in such tasks. Novice chess players can remember briefly presented chess

positions no better than the capacity limitations of short-term memory allow them. Only

master chess players who have devoted a decade or so to the study of chess will show truly
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superior memory in these situations. Indeed, part of becoming an expert in a skill consists

in the development of superior memory in the expert domain. These memory skills are

entirely domain specific, however. The chess master on all memory tasks outside their

expertise perform no better than people normally do.

Thus, LTWM is an expert skill. There are, however, tasks at which most adults in

our society are experts. Text comprehension is an example. As long as the texts to be

comprehended are simple, reasonably well written and about familiar, everyday topics, we

are all experts. The reading (or listening) skills involved are highly practiced over a

lifetime. The subject matter of many texts often concerns everyday events and human

actions and relations – subjects in which our lifelong experience qualifies us as experts. A

text on atomic physics needs a physicist  to comprehend, but for a simple story or item in

the newspaper we all have the necessary expertise.  Thus, we comprehend such texts

readily, retrieve relevant knowledge or personal experiences automatically without special

effort, and remember what we read, also without special effort. The LTWM mechanisms is

behind this achievement, and explains why our memory is so good here and so poor when

we read something in an unfamiliar domain or are trying to acquire a new skill.

The LTWM theory claims that superior memory in expert domains is due to

LTWM, whereas in non-expert domains LTWM can be of no help. Thus, working memory

has two components: short-term working memory, which is available under all conditions,

but is severely limited in its capacity.  This is what has been studied in most laboratory

memory tasks. The second component of working memory is LTWM, which is not

capacity limited but available only in expert domains. LTWM is conceived as a subset of

long-term memory1 that is directly retrievable via cues in short-term working memory. Any

cue in short-term memory – alternatively we could talk about contents of consciousness, or

items in the focus of attention – that is linked by a stable memory structure to long-term

memory nodes makes available these nodes in a single, automatic and quick retrieval

operation. The retrieval is fast and automatic in that it does not require mental resources

(such as an intentional, conscious memory search does). Thus, the contents of short-term

memory automatically create LTWM: a zone in long-term memory that is directly linked to

these contents and immediately retrievable. The crucial restriction is that the items in short-

term working memory and the items in long-term memory are linked by stable, fixed

memory structures that permit direct retrieval. This is the case only in very well practiced

domains – where we are experts. Without these expert memory links, retrieval can be a

protracted and resource demanding process and is controlled rather than automatic.
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Long-term memory is a relatively permanent system.  Additions and modifications

occur, as well as forgetting, but the system as a whole changes only slowly. Short-term

memory, the focus-of-attention or content- of-consciousness, on the other hand, changes

from moment to moment. Since LTWM is generated dynamically by the cues that are

present in short-term memory, LTWM mirrors the changes in short-term memory. A

flashlight metaphor has often been used to describe short-term memory: a small beam that

lights up 3 or 5 nodes in long-term memory.  Imagine each of these nodes is linked to

nodes in the unlit part of the long-term memory network. The linked nodes form LTWM.

Working memory consists of the lit nodes plus the linked nodes in the dark part of long-

term memory. The flashlight is able to jump immediately to any of these linked nodes,

without external guidance.

The above represents the simplest case of LTWM. The links pre-exist in long-term

memory  (stable associations or other memory structures such as schemata, frames, etc.).

LTWM in this case involves no more than a set of cues in short-term memory plus the

long-term memory nodes they are linked to in long-term memory.  But this is only part of

the story, because the ongoing cognitive process results in the generation of new nodes,

which greatly enrich and complicate LTWM. These nodes are first generated in short-term

working memory, but as the focus of attention shifts away, they fade from consciousness.

Depending on the nature of these nodes, they may be more or less permanent or subject to

forgetting.

Consider what happens in reading comprehension: Comprehension results in the

formation of new nodes in memory (propositions derived from the text) which are linked in

a complex pattern determined by the nature of the text and the comprehension strategies of

the reader. Figure 1 shows both episodic memory nodes generated in the process of

comprehension, and long-term memory nodes linked with them. The links among newly

formed propositions  (those are the links that are being formed in the comprehension

process, as described, for instance by the construction-integration model of text

comprehension of Kintsch, 1998) are shown as thick black lines, whereas pre-existing

links in long-term memory are shown as thin lines. Broken lines, linking newly formed

propositions and long-term memory nodes indicate the memory links that generate LTWM.

Working memory in Figure 1 then consists of the text nodes still active in short-term

memory (short-term working memory), plus older text nodes no longer in the focus of

attention but linked to the active nodes by the links established between text nodes in the

process of comprehension, and the long-term memory nodes linked to active nodes by pre-

                                                                                                                                                
1 The term long-term memory is used broadly here; it includes personal experiences as well as general
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existing memory structures (LTWM). Not any link will do, however, to generate a LTWM

node: the link must be stable and strong, permitting automatic retrieval.

Figure 1. Three propositions (large squares) are held in short-term

working memory; the other four squares represent text propositions

already out of short-term working memory. Filled in nodes are long-

term memory nodes that are directly linked to contents of short-term

memory and comprise LTWM. Thick lines are strategically

established links during comprehension; dashed lines represent links

between episodic nodes and long-term memory nodes.

How are the links that generate LTWM formed? The newly formed links in text

comprehension are the result of the reader’s comprehension strategies, as specified by the

construction-integration-model. Some links are strong, some are weak, some nodes are

tightly interconnected and some are sparsely interconnected, depending on how the mental

representation of a text has been built up. The structure that supports retrieval is not being

formed for the purpose of memory retrieval. Rather, the ability to retrieve is incidental to

comprehension: if one comprehends a text properly, a mental structure has been generated

                                                                                                                                                
knowledge.

episodic 
text memory

long-term  
memory
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that supports memory retrieval via LTWM. What is required for LTWM, therefore, are

appropriate comprehension strategies (e.g., as described in van Dijk & Kintsch, 1983), and

the knowledge (linguistic knowledge, world knowledge, specific topic knowledge) and

skills (language skills) necessary for the use of these strategies.

LTWM is not always incidental. There is a continuum between some processes

where LTWM is incidental, as in text comprehension or chess, and other processes where

it is intentional, as in the case of the retrieval structures used in mnemonic techniques.

Thus, the memory artist studied by Chase & Ericsson (1981) employed a set of specific

encoding strategies for digit strings for the sole purpose of memorizing them, and used a

body of knowledge (about running times) that was needed for the operation of these

encoding strategies. Another example is the method of loci where a complex schema is

used over and over again, together with specialized imagery encoding strategies for the sole

purpose of memory retrieval. It is important to realize, however, that the deliberate retrieval

structures involved in mnemonic techniques are but one type of structures that support

LTWM. Incidental structures that arise from text comprehension processes or planning

moves in a chess game represent quite different cases which are ecologically more

important.

Two types of links are involved in LTWM: links among newly formed nodes as a

text is being comprehended, and links between these newly formed nodes and other nodes

in long-term memory.  For new nodes and links in text comprehension the process

assumed here is the following: certain features of a text elicit an appropriate processing

strategy; the application of this strategy results in the creation of new memory nodes, links

among them, and links among the new nodes and the body of long-term-memory; the

whole process is automatic. Thus, faced with a particular text, an expert speaker of the

language automatically recognizes which comprehension strategies are appropriate, applies

them, and generates a network of propositions linked to prior knowledge. A chess player

looks at a board and applies appropriate planning strategies, creating a network of

representations that enable later recall. A memory artist “sees” a random digit string as a

meaningful running time and stores it at a particular place in his reusable retrieval structure.

An expert physician recognizes a patient’s signs and symptoms, which are stored as a

pattern for subsequent decisions about disease, therapy, and management. The

performance is quick and effortless in each case, but limited to the specific domain in

question. In each case an episodic memory structure is created that supports LTWM. The

nature of these strategies, and the resulting structures, is the object of study in

psycholinguistics, the psychology of chess, the psychology of clinical reasoning, or



8

mnemonics, respectively, and differs widely between these domains. Although we know

something about these strategies and their use, much remains to be learned.

But what about the links between newly generated memory nodes and other nodes

in long-term memory – the dashed lines in Figure 1?  Calling them associations and

schemata does not really explain anything. What is needed is a process model for the

automatic elicitation of relevant knowledge nodes. Myers et al. (1994) attempt to do so with

their “resonance model” which specifies a mechanism for such automatic knowledge

retrieval in discourse comprehension (and, presumable, other higher cognitive processes).

Their model lacks, however, a way to specify the huge and complex long-term memory

network upon which this resonance process must operate. Latent Semantic Analysis (LSA)

can fill this gap in that it allows us to simulate human knowledge structures on a large

scale.

How is it possible to simulate human knowledge, its wealth, its richness, and its

complexity, its organization and structure? Human knowledge is the result of our

interaction with the world. The nature of that interaction is constrained by the nature of the

human body and human mind. Human knowledge contains information at different levels

of representation, starting with the level of action and sensory experience which we share

with some animals, to linguistically coded information and the abstract-symbolical level

which are distinctly human. Language has come to be a dominant factor in the way human

knowledge is encoded and structured. It is certainly not the case that all human knowledge

is linguistic, but much of what we know is indeed represented linguistically, either because

the original information was in linguistic form or because we have recoded linguistically a

type of experience that was non-linguistic to begin with: an action, sensation, emotion, or

abstraction. Thus, while human knowledge may take on many forms, linguistic

representations play a particularly important role. The arguments for these claims about the

nature of knowledge representations are summarized and discussed in some detail in

Kintsch (1998).

How could such a knowledge-based system be modeled? Since it is too large and

too opaque for hand coding, the only way would be to design an algorithm that acquires

knowledge through experience in the way humans do. However, because computers are by

nature very different from humans, they cannot interact with the world and learn from it in

the way humans do. There is no solution to this dilemma.

There is a solution, however, to a more limited problem.  Suppose we model not all

of human knowledge, but only its linguistically encoded component, or more precisely,

only that part of human knowledge that is reflected in written language. While this is

undoubtedly a nontrivial restriction, the portion of human knowledge that is representable
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by the written word is a large one. It does not comprise all knowledge, and the written

representation may sometimes introduce distortions - but if we could successfully model

this section of human knowledge, this would be a major advance. Latent Semantic

Analysis, or LSA, permits us to do so.

LSA is a fully automatic computer method for the construction of a knowledge

representation in the form of a high-dimensional semantic space based on the analysis of a

large corpus of written text. The computer reads a large amount of text - millions of word

tokens - consisting of thousands of documents and ten thousands of word types. From this

input it constructs a huge word-by-document matrix, the entries of which are the

frequencies with which each word type appeared in each document. Thus, word co-

occurrences are the input to LSA, much like percept-action-word co-occurrences are the

input to the human cognitive system. This input is processed and transformed in two ways:

first, through the mathematical technique of singular value decomposition, and then

through dimension reduction. Singular value decomposition is a technique which allows

one to express any matrix as the product of three matrices, one of those being the singular

values matrix. If one multiplies the three matrices together, one simply gets back the

original one. But we don't want the original matrix of word co-occurrences, because that

matrix contains too much information. The fact that an author used this particular word in

this particular place is not important; rather, we want to know what kinds of words could

be used in that place. In other words, we want to represent the basic meaning relationships,

not particular word choices. LSA achieves that through dimension reduction: it throws

away most of the information it has computed and retains only the information associated

with the 400 or so largest singular values of the matrix. Thus, it keeps the essence of the

semantic relationships in the texts it has read, but discards the incidental and irrelevant

detail.

The rationale for this analysis and its details are described elsewhere (Deerwester,

Dumais, Furnas, Landauer, & Harshman, 1990; Landauer & Dumais, 1997; Landauer,

Foltz, & Laham, 1998). Here, a simple example must suffice to indicate the flavor of this

method. For instance, in a large corpus of texts, the singular and plural forms of a noun are

not very highly correlated: in general, when one talks about a particular mountain one does

not also talk about mountains in the same context, and vice versa. Thus, the correlation

between mountain and mountains is probably low in the texts that LSA reads, perhaps

around r = .1 or .2; after dimension reduction, however, this correlation is much higher (r

= .84 in this case): LSA has inferred that mountain and mountains are closely related

semantically (though by no means identical).
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Although LSA starts with word co-occurrences (much like a child listening to an

adult's speech), it infers from these co-occurrences a semantic space that reflects the

meaning relationships among words and sentences, no longer their co-occurrences. In

other words, the result of dimension reduction is an abstract knowledge space representing

the structure of the information underlying the texts it had read.

Having constructed a high-dimensional semantic space of typically 300-400

dimensions in this way, we can express words, sentences, and whole texts as vectors in

that space, with all the advantages this mathematical representation affords. That is, we can

readily compute the semantic relatedness of vectors in terms of the cosine (a measure that

can be interpreted much like the familiar correlation coefficient), and we can find out what

other vectors are located in the semantic neighborhood we are interested in. For instance,

around mountain we find peaks, rugged, ridges, and climber, whereas around mountains

we find peaks, rugged, plateaus, and foothills. This is the kind of information we need to

model knowledge activation via LTWM in comprehension.

According to the construction-integration model of text comprehension (Kintsch,

1988; 1998) knowledge activation is a bottom-up, associative process, followed by

contextual integration. LSA permits us to model the bottom-up associative component of

this two-stage process objectively and in detail. We assume that the LSA space is the long-

term working memory structure within which automatic knowledge activation in

comprehension takes place. Thus, the memory structure that is responsible for the

generation of LTWM is the semantic space: items close in the semantic space are accessible

in LTWM, whereas items removed in the semantic space require more elaborate and

resource consuming retrieval operations.

Specifically2, each word in a text will automatically generate a LTWM consisting of

its immediate semantic neighborhood. The likelihood that an item of the semantic

neighborhood will be included in LTWM is a function of the cosine between the source

vector and the target vectors.  The exact nature of that function cannot be specified at this

point, however.

Propositions, in addition to words, also activate knowledge from their semantic

neighborhood, in the same way as words do. For LSA, propositions are disambiguated

and appropriately parsed word groups. Examples will be described later.

Macro-units of a text can also be represented as vectors in the LSA space. Indeed,

once a text has been parsed into its constituent words and propositions, the vector

representing the text as a whole is simply the centroid of the constituent vectors. Thus, the

                                                
2  The discussion of knowledge activation in text comprehension is based on Kintsch (in press).
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macrostructure of the text is given for free as soon as the text's microstructure has been

computed (assuming that the appropriate macro-units are clearly signaled in the text).

Hence macro-units can also participate in the knowledge activation process, exactly as

words and propositions do. Indeed, items activated from the neighborhood of macro-units

will usually turn out to be particularly important for the final interpretation of the text (the

situation model that is constructed from the text), because they will tend to be widely

interconnected. In contrast, locally activated knowledge items may become deactivated in

the integration process if they are not linked to other items in the text.

How much knowledge elaboration does occur in comprehension? Technically

speaking, how many items from the semantic neighborhood of each text unit are included

in LTWM? These are not questions that can be answered in general. Reader activity will

depend on many factors. In the extreme case of no elaboration, the resulting mental

representation of the text will be a pure textbase; if a substantial amount of knowledge

elaboration occurs, the mental representation is called a situation model in the terminology

of Kintsch (1998.)

Once a textbase has been constructed and knowledge has been activated in the

manner described above, a constraint-satisfaction or integration process takes over

according to the construction-integration model. Integration ensures that only related items

play a role in the final knowledge representation, and that all the irrelevant and

contradictory information that necessarily has been included in the bottom-up construction

process is rejected.

To illustrate the control of knowledge activation  - that is, the construction of a

LTWM - according to the CI model, consider a simple sentence like (example from

Kintsch, in press)

The band played a waltz.

According to the CI model, we first construct a network representing the sentence itself as

well as the items of knowledge that were retrieved from long-term memory by the text

elements. Figure 2 shows the three word groups that make up the sentence as well as the

corresponding proposition. I have also indicated knowledge activation in Figure 2. Three

close neighbors for each of the four original sentence constituents were selected (with some

overlap, so that the total number of items is less than 12) and connected to their sources and

each other with links whose strengths were set equal to the cosines of the corresponding

vector pairs in the LSA space. These nodes form the LTWM created by the sentence “The

band played a waltz,” or rather a segment of LTWM, because LTWM may contain a larger

neighborhood than just three nodes. The links between the three content words and the

proposition node were assigned a strength value of 1 to make sure that they will dominate
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the resulting network. Note that the network thus constructed contains relevant (e.g.,

dance) as well as irrelevant (e.g. game) nodes. After integration, however, the irrelevant

nodes are deactivated (their activation values are low), while the relevant knowledge items

as well as the original sentence constituents remain strongly activated, as seen in Figure 3.

A network with strength values as in Figure 3 would be the situation model the CI model

has formed, given that the LSA space functions like a retrieval structure and given that the

particular knowledge items were included in LTWM as in Figure 2. We can express this

situation model as a vector in the LSA space, too: the vector representation of the sentence

is the centroid of all the component vectors, weighted by the activation values shown in

Figure 3.

[PLAY,BAND,WALTZ]

The band played a waltz

PIANO

DANCE MUSIC

GAME

BASEBALL

CHILDREN

MELODIESSONGS

GANG

STRIPE

Figure 2. Knowledge activation for the sentence The band played a waltz.

Words are enclosed by ovals, the underlying proposition by a rectangle, and

the concepts retrieved from long-term memory, which form LTWM by

rounded rectangles. Only links above a certain strength are shown. (From

Kintsch, in press).
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Figure 3. Final activation values for the nodes in Figure 1. (From Kintsch, in press).

Now consider the two-sentence mini-text

The band played a waltz. Mary loved to dance.

There are no direct links between these two sentences, but the sentences are nevertheless

indirectly coherent (Kintsch, 1998). LSA lets us assign a non-arbitrary value to the

coherence link between these two sentences, the cosine between their corresponding

vectors, which turns out to be .45 in this case. No inference is required to connect these

sentences: the very fact that they both are situated in the same semantic space provides a

link of a certain strength between them.

A slightly more complex case, the often-cited newspaper headline Iraqi head seeks

arms  is shown in Figure 4.  There are two propositional interpretations3 of this sentence: A

head from Iraq seeks arms, which does not make any sense, and The government of Iraq

wants weapons, which is the intended meaning. The two propositional interpretations

interfere with each other (the broken lines indicate a link strength of -1). If the network

consisting only of the sentence and the two antagonistic propositions is integrated, neither

                                                
3 In Figure 1 the proposition was not really needed - the sentence itself would have served just as well. In
general, propositions are needed to clarify the psychologically most relevant meaning relations in complex
or ambiguous sentences (as in Figure 4), neglecting, however, some semantic and syntactic detail.



14

interpretation wins out. Furthermore, the process of associative knowledge elaboration, in

this case, fails to disambiguate this sentence.  If we add, like in Figure 2, three associates

from the neighborhood of each node (not shown in Figure 4), the integration process is not

helped. What is needed in this case is a more directed inference process: not only the

propositions shown in rectangular boxes must be constructed as part of the original parsing

process, but also the intermediate propositions shown in the rounded-off rectangles that

provide the missing links between the words and the eventual propositions (Iraq is a

country; countries have governments; governments have heads  - etc.). If these inferences

are included in the network, the network settles on the intended interpretation: the want-

government-weapons proposition receives a final activation value of .89, the have-Iraq-

government proposition ends up with .66, and both unintended propositions receive an

activation value of zero.

Iraqi head seeks arms

WANT[HEAD,ARMS]FROM[HEAD,IRAQ

WANT[GOVERNMENT,WEAPONS]HAVE[ IRAQ,GOVT]

IS[IRAQ,COUNTRY]

HAVE[COUNTRY,GOVT] HAVE[GOVT,HEAD]

IS[ARMS,WEAPONS]

Figure 4. The sentence “Iraqi head seeks arms” with two opposing

propositional interpretations and bridging inferences. Words are enclosed

by ovals, the propositions by rectangles, and inferred propositions by

rounded rectangles. (From Kintsch, in press).
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The two examples discussed here illustrate how LTWM is generated automatically

in text comprehension according to the CI model . In the first example the LSA-CI model

provided a good account of the process of knowledge activation. However, as the second

example shows, this is not always sufficient: sometimes the process of bottom-up

associative knowledge elaboration must be supplemented by more a goal-directed inference

process to generate a coherent representation of a text. LSA is a model of knowledge

representation and it must be combined with theories that specify the precise processes that

operate on this representation. The CI model - discussed in detail in Kintsch (1998) - is one

such process theory, but to completely model human thinking and language understanding,

more than that will be required - for instance, an explicit account of how sentences are

parsed in the first place, as well as the analytic, goal directed problem solving that is

involved in the formation of inferences in text comprehension.

Text comprehension is therefore one area where it is in fact possible to formulate a

computational model of LTWM. Even though that model is still incomplete in some

respects, it specifies clearly the nature of the memory structures involved in LTWM . It is

important to note that these structures are not uniform, either in their nature or in the

manner of their generation. The episodic part of LTWM in text comprehension springs

from the comprehension process itself, the details depending on the strategies of the

comprehender as well as the characteristics of the to be comprehended text.  A LTWM is

generated in comprehension as long as the strategies are well-practiced and automatic, and

result in the establishment of strong links among the propositions of a text. The other part

of LTWM that makes available relevant portions of long-term memory  in LTWM ,

depends on a quite different mechanism. Here, the semantic space itself  functions like a

retrieval structure, making close neighbors of newly generated text propositions

automatically available in LTWM, as long as they can be successfully integrated with the

existing episodic structure.

What defines LTWM is the existence of strong links in memory that can support

automatic retrieval. How these links are generated, and, indeed, how the nodes themselves

are generated which are linked in LTWM, are important and interesting questions that must

be answered by the study of text comprehension, medical diagnosis, chess playing and

other cognitive skills in which LTWM plays a role. LTWM is not always a matter of

schemata, or retrieval structures, or strong associations. It can be any of these and more

under the right circumstances. Anything that guarantees automatic retrieval will do, as long

as it can be generated automatically within the context of  the cognitive process  requiring
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the use of LTWM. That is a serious restriction, because it essentially limits the use of

LTWM to expert performance.
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